Abstract
In this study, eutectic-Bi–Sn-coated basalt fiber (BF)-reinforced carbon nanotube (CNT)/epoxy hybrid composites were fabricated for dual functionality, i.e., in managing and shielding clinical X-ray radiation and electromagnetic interference (EMI). BF mats were coated with Bi–Sn nanoparticles and subsequently layered with multi-walled CNTs mixed epoxy resin using the vacuum-assisted resin transfer method. High resolution field emission scanning electron microscopy revealed a good dispersion of Bi–Sn nanoparticles over BF and, CNTs within the epoxy matrix. X-ray diffraction analysis confirmed the presence of Bi–Sn, basalt, and CNT phases in the composites. High-resolution Raman spectroscopy revealed characteristic peaks corresponding to the CNTs, epoxy, and Bi–Sn phases. EMI total shielding effectiveness (SET) analysis in the X-band frequency range (8.2–12.4 GHz) demonstrated that the Bi–Sn/BF/CNT/epoxy (S3) exhibits the highest SET value of 30.4 dB, which is attributable to the synergistic effect of the Bi–Sn coating and CNT filler. Analysis of X-ray-radiation leakage revealed that all the composite samples effectively attenuated X-rays with minimal leakage, limited to 6.8 mR. These results indicate the potential of these composites for applications as eco-friendly, non-toxic, and lead-free various industries including healthcare, electronics, aerospace, and defense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.