Abstract

The micromachining of hydroxyapatite (HAp) is highly important for orthopedics and dentistry, since human bone and teeth consist mainly of HAp. We demonstrate ultrashort Ti:sapphire laser ablation of HAp, using pulse-widths of 50 fs, 500 fs, and 2 ps at a wavelength of 820 nm and at 1 kpps. The crucial medical issue is to preserve the chemical properties of the machined (ablated) surface. If the chemical properties of HAp change, the human bone or tooth cannot re-grow after laser processing. Using X-ray photoelectron spectroscopy, we observe chemical properties of HAp ablated in air. The HAp is ablated at laser fluences of 3.2 J/cm2 (6.4×1013 W/cm2 at 50 fs), 3.3 J/cm2 (6.6×1012 W/cm2 at 500 fs), and 9.6 J/cm2 (4.8×1012 W/cm2 at 2 ps), respectively. As a result it is found that the ablated surface is unchanged after laser ablation over the pulse-width range used in this experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.