Abstract

Bioceramics with porous microstructure has attracted intense attention in tissue engineering due to tissue growth facilitation in the human body. In the present work, a novel manufacturing process for producing hydroxyapatite (HA) aerogels with a high density shell inspired by human bone microstructure is proposed for bone tissue engineering applications. This method combines laser processing and traditional freeze casting, in which HA aerogel is prepared by freeze casting and aqueous suspension prior to laser processing of the aerogel surface with a focused CO2 laser beam that forms a dense layer on top of the porous microstructure. Using the proposed method, HA aerogel with dense shell was successfully prepared with a microstructure similar to human bone. The effect of laser process parameters on the surface, cross-sectional morphology and microstructure was investigated in order to obtain optimum parameters and has a better understanding of the process. Low laser energy resulted in a fragile thin surface with defects and cracks due to the thermal stress induced by the laser processing. However, increasing the laser power generated a thicker dense layer on the surface, free of defects. The range of 40–45 W laser power, 5 mm/s scanning speed, spot size of 1 mm, and 50% overlap in laser scanning the surface yielded the best surface morphology and microstructure in our experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.