Abstract
Pore size sieving, Donnan exclusion, and their combined effects seriously affect ion separation of membrane processes. However, traditional polymer-based membranes face some challenges in precisely controlling both charge distribution and pore size on the membrane surface, which hinders the ion separation performance, such as heavy metal ion removal. Herein, the heterocharged covalent organic framework (COF) membrane is reported by assembling two kinds of ionic COF nanosheets with opposite charges and different pore sizes. By manipulating the stacking quantity and sequence of two kinds of nanosheets, the impact of membrane surface charge and pore size on the separation performance of monovalent and multivalent ions is investigated. For the separation of anions, the effect of pore size sieving is dominant, while for the separation of cations, the effect of Donnan exclusion is dominant. The heterocharged TpEBr/TpPa-SO3H membrane with a positively charged upper layer and a negatively charged bottom layer exhibits excellent rejection of multivalent anions and cations (Ni2+, Cd2+, Cr2+, CrO4 2-, SeO3 2-, etc). The strategy provides not only high-performance COF membranes for ion separation but also an inspiration for the engineering of heterocharged membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.