Abstract

AbstractThe tail index is an important parameter that measures how extreme events occur. In many practical cases, this tail index depends on covariates. In this paper,we assume that it takes a finite number of values over a partition of the covariate space. This article proposes a tail index partition-based rules extraction method that is able to construct estimates of the partition subsets and estimates of the tail index values. The method combines two steps: first an additive tree ensemble based on the Gamma deviance is fitted, and second a hierarchical clustering with spatial constraints is used to estimate the subsets of the partition. We also propose a global tree surrogate model to approximate the partition-based rules while providing an explainable model from the initial covariates. Our procedure is illustrated on simulated data. A real case study on wind property damages caused by tornadoes is finally presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.