Abstract
In statistics of extremes, inference is often based on the excesses over a high random threshold. Those excesses are approximately distributed as the set of order statistics associated to a sample from a generalized Pareto model. We then get the so-called “maximum likelihood” estimators of the tail index γ. In this paper, we are interested in the derivation of the asymptotic distributional properties of a similar “maximum likelihood” estimator of a positive tail index γ, based also on the excesses over a high random threshold, but with a trial of accommodation of bias in the Pareto model underlying those excesses. We next proceed to an asymptotic comparison of the two estimators at their optimal levels. An illustration of the finite sample behaviour of the estimators is provided through a small-scale Monte Carlo simulation study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.