Abstract

Let the random vector (X,Y) follow a bivariate Sarmanov distribution, where X is real-valued and Y is nonnegative. In this paper we investigate the impact of such a dependence structure between X and Y on the tail behavior of their product Z = XY. When X has a regularly varying tail, we establish an asymptotic formula, which extends Breiman’s theorem. Based on the obtained result, we consider a discrete-time insurance risk model with dependent insurance and financial risks, and derive the asymptotic and uniformly asymptotic behavior for the (in)finite-time ruin probabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.