Abstract
In this paper, we study the asymptotic behaviour of the tail probability of the number of customers in the steady-state M/G/1 retrial queue with Bernoulli schedule, under the assumption that the service time distribution has a regularly varying tail. Detailed tail asymptotic properties are obtained for the conditional probability of the number of customers in the (priority) queue and orbit, respectively, in terms of the recently proposed exhaustive stochastic decomposition approach. Numerical examples are presented to show the impacts of system parameters on the tail asymptotic probabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.