Abstract
Objectiveassess the effectiveness of a new method for classifying EEG recording features through the use of tags within reports. We present feature prevalence in a sample of patients with toxic-metabolic encephalopathy and discuss the advantages of this approach over existing classification systems. Methodsduring EEG report creation, tags reflecting background activity, epileptiform features and periodic discharges were selected according to the findings of each recording. Reports including the tags have been collected and processed by the EEG report parser script written in PHP language. The resulting spreadsheet was analysed to calculate the prevalence and type of EEG features in a sample group of patients with toxic-metabolic encephalopathy. Resultstag checking and extraction were very little time-consuming processes. Considering 5784 EEG recordings performed either in inpatients or outpatients over 2 years, toxic-metabolic aetiology was tagged in 218 (3.8 %). The most frequent background feature was severe slowing (5–6 Hz frequency), occurring in 79 (36.2 %). Epileptiform abnormalities were rare, reaching a maximum of 10 (4.6 %). Triphasic waves were tagged in 43 (19.7 %) recordings. Conclusionstagging and parsing processes are very fast and integrated into the daily routine. Sample analysis in patients with toxic-metabolic encephalopathies showed EEG slowing as the prevalent feature, while triphasic waves occurred in a minority of recordings. Existing software such as “SCORE” (Holberg EEG) requires the replacement of the currently used software for EEG reporting, minimizing additional costs and training. EEG Report Parser is free and open-source software, so it can be freely adopted, modified and redistributed, allowing further improvement and adaptability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.