Abstract
Triphasic waves arising in patients with toxic metabolic encephalopathy (TME) are often considered different from generalized periodic discharges (GPDs) in patients with generalized nonconvulsive status epilepticus (GNCSE). The primary objective of this study was to investigate whether a common mechanism can explain key aspects of both triphasic waves in TME and GPDs in GNCSE. A neural mass model was used for the simulation of EEG patterns in patients with acute hepatic encephalopathy, a common etiology of TME. Increased neuronal excitability and impaired synaptic transmission because of elevated ammonia levels in acute hepatic encephalopathy patients were used to explain how triphasic waves and GNCSE arise. The effect of gamma-aminobutyric acid-ergic drugs on epileptiform activity, simulated with a prolonged duration of the inhibitory postsynaptic potential, was also studied. The simulations show that a model that includes increased neuronal excitability and impaired synaptic transmission can account for both the emergence of GPDs and GNCSE and their suppression by gamma-aminobutyric acid-ergic drugs. The results of this study add to evidence from other studies calling into question the dichotomy between triphasic waves in TME and GPDs in GNCSE and support the hypothesis that all GPDs, including those arising in TME patients, occur via a common mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.