Abstract

This paper proposes a tag-based approach for physical (PHY)-layer authentication in a reconfigurable intelligent surface (RIS) communication system. We first extract the intrinsic PHY-layer features of RIS communication systems in terms of channel gain and background noise, and then apply these PHY-layer features, a random signal as well as the private key of the transmitter to construct a robust cover tag signal against the impersonation attack. We adopt an asymmetric cryptography technique to encrypt tagged signals and to resist against unauthorized detection and tampering attacks during the transmission process. The receiver then applies the maximum a-posteriori (MAP) ratio test to conduct authentication based on the received tag signal, a reference tag signal transmitted in training phase and the knowledge of distributions of the channel gain, background noise and the random signal. We also provide security analysis to demonstrate how the proposed scheme can resist unauthorized detection, tampering attacks, etc. With the help of tools of the MAP ratio test, maximum likelihood estimation, we further analyze the distribution of the test statistics and derive analytical models for the false alarm and detection probabilities. Finally, extensive simulations are conducted to verify the theoretical results and to illustrate the performance of the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call