Abstract

The lack of characterizations of the adsorption capability toward intermediates during reactions causes difficulties in determining the structural optimization principle of the catalysts for the 2-electron oxygen reduction reaction (2e- ORR). Here, a Tafel-θ method is proposed to evaluate the surface coverage (θ) of important intermediates (*OOH and *OH) on the material surface and further help optimize the catalyst. With the assistance of Tafel-θ analysis, a Zn nanoparticle incorporated oxygen-doped carbon (ZnNP-O-C) catalyst with high 2e- ORR performance (onset of ∼0.57 V and selectivity of >90.4%) in neutral media was achieved. Both the theoretical calculation and characterization results are consistent with the Tafel-θ deduction, revealing that an appropriate ratio of Zn nanoparticles and bridging O can optimize the *OOH adsorption/desorption strength of the adjacent carbon site. This study not only provides an advanced ZnNP-O-C catalyst for electrochemical H2O2 production but also proposes a fast and precise method for the comprehensive assessment of future catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call