Abstract

Facile synthetic approaches toward the development of efficient and durable nonprecious metal catalysts for the oxygen reduction reaction (ORR) are very important for commercializing advanced electrochemical devices such as fuel cells and metal-air batteries. Here we report a novel template approach to synthesize mesoporous Fe-N-doped carbon catalysts encapsulated with Fe3C nanoparticles. In this approach, the layer-structured FeOCl was first used as a template for the synthesis of a three-dimensional polypyrrole (PPy) structure. During the removal of the FeOCl template, the Fe3+ can be absorbed by PPy and then converted into Fe3C nanoparticles and Fe-N-C sites during the pyrolyzing process. As a result, the as-prepared catalysts could exhibit superior electrocatalytic ORR performance to the commercial Pt/C catalyst in alkaline solutions. Furthermore, the Zn-air battery assembled using the mesoporous carbon catalyst as the air electrode could surpass the commercial Pt/C catalyst in terms of the power density and energy density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call