Abstract

Aqueous dispersions of Ca montmorillonite contain small clusters of clay platelets, often named In these tactoids, the platelets are arranged parallel to each other with a constant spacing of 1 nm. We have used small-angle X-ray scattering (SAXS) to determine the average number of platelets per tactoid, . We found that this number depends on the platelet size, with larger platelets yielding larger tactoids. For a dispersion in equilibrium with a mixed electrolyte solution, the tactoid size also depends on the ratio of divalent to monovalent cations in the reservoir. Divalent counterions are strongly favored in this competition and will accumulate in the tactoids. In dispersions of pure sodium montmorillonite, that are equilibrated with a mixture of Na+ and Ca2+ cations, the Na+ cations initially cause a repulsion between the platelets, but the divalent ions rapidly replace the monovalent ones and lead to the formation of tactoids, typically within less than one hour based on the divalent to monovalent ratio. This cation exchange as well as tactoid formation can be semiquantitatively predicted from Monte Carlo simulations. (Less)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call