Abstract
Tacrolimus is a substrate for P-glycoprotein (P-gp) and cytochrome (CYP) P4503A. P-gp is encoded by the multiple drug resistance gene MDR1 and CYP3A is the major enzyme responsible for tacrolimus metabolism. Both MDR1 and CYP3A5 genes have multiple single nucleotide polymorphisms. The objective of this study was to evaluate whether the MDR1 exon21 and exon26 polymorphisms and the CYP3A5 polymorphism are associated with tacrolimus disposition in pediatric heart transplant patients. At 3, 6 and 12 months post transplantation, a significant difference in tacrolimus blood level per dose/kg/day was found between the CYP3A5 *1/*3 (CYP3A5 expressor) vs. *3/*3 (nonexpressor) genotypes with the *1/*3 patients requiring a larger tacrolimus dose to maintain the same blood concentration. There were no significant differences in tacrolimus blood level per dose/kg/day between MDR1 exon21 G2677T and exon 26 C3435T at 3 months, but both were found to have a significant association with tacrolimus blood level per dose/kg/day at 6 and 12 months. We conclude that specific genotypes of MDR1 and CYP3A5 in pediatric heart transplant patients require larger tacrolimus doses to maintain their tacrolimus blood concentration, and that this information could be used prospectively to manage patient's immunosuppressive therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.