Abstract

Polyurethane pressure-sensitive adhesives (PU-PSAs) with satisfactory tack, cohesion, and removability were newly developed through the synthetic process by reacting methylene diisocyanate, poly(ethylene glycol) (PEG), and a 1,4-butanediol chain extender based on the different HDI/HDI trimer ratios. The sticking properties of PU-PSAs depended on both the HDI/HDI trimer ratio and crosslinking-agent composition in the formulation. The molecular weight (MW) dependence of adhesion in PU-PSA was observed in the range of 1000 < Mn < 3000, suggesting that the increase in MW limits the pressure-sensitive adhesion of these samples. The differences in the crosslinking-density significantly affected the cohesion, adhesion, and tack in PU-PSA. The formulation of 50 wt.% 600PEG and 50 wt.% crosslinking-agent and an HDI/HDI trimer ratio of 1.0 led to the optimal balance between the adhesion and cohesion properties owing to the sufficient tack, high 180-peel strength, and good cohesion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.