Abstract

Relaxation processes accompany all stages of the lifetime of viscoelastic pressure-sensitive polymer adhesives, which can form strong adhesive joints with substrates of various chemical natures under application of a slight external pressure to the adhesive film for a few seconds. This review deals with comparison of the adhesion and relaxation properties of a number of typical pressure-sensitive adhesives based on polyisobutylene, butyl rubber, styrene-isoprene-styrene triblock copolymers, alkyl acrylate copolymers, and silicone adhesives as well as pressure-sensitive adhesives based on blends of high-molecular-mass polyvinylpyrrolidone with oligomeric poly(ethylene glycol). Within all three stages of the lifetime of adhesive joints (under adhesive-bond-forming pressure, upon withdrawal of contact pressure in the course of relaxation of the adhesive material, and under the force detaching an adhesive film from the substrate surface), the strength of adhesive joints has been shown to be controlled by large-scale relaxation processes, which are characterized by long relaxation times in the range 150–800 s. All examined pressure-sensitive adhesives can be arbitrarily divided into two groups. The first group is composed of fluid adhesives that relax comparatively fast and exhibit no residual (unrelaxed) stress. The second group includes elastic adhesives capable storing mechanical energy in the course of deformation that are characterized by appreciably longer relaxation times and display residual stress after relaxation. Conditions of adhesive debonding (e.g., strain amplitude and deformation velocity) significantly affect the relaxation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.