Abstract
Using the sucrose-gap technique, we attempted to assess a role for tachykinins (TKs) in mediating noncholinergic excitatory junction potential (EJP) and contraction, in the circular muscle of rat proximal colon. Excitatory responses were evoked by submaximal electrical field stimulation (EFS) in the presence of atropine (1 µM), guanethidine (1 µM), indomethacin (10 µM), and Nomega -nitro-L-arginine methyl ester (L-NAME) (100 µM). The NK1 receptor antagonist, SR 140,333 (up to 3 µM) or the NK2 receptor antagonists, SR 48,968 and MEN 10,627 (up to 5 µM) produced a partial inhibition of the excitatory responses to EFS. The co-administration of the selective NK1 and NK2 receptor antagonists produced additive effects on the responses to EFS. Selective NK1 receptor agonist, [Sar9, Met (O2)11]-substance P, induced depolarization and contraction, antagonized by SR 140,333, but not by NK2 receptor antagonists. NK2 receptor agonist, [ betaAla8]-neurokinin A (4-10), also produced electrical and mechanical excitatory effects that were antagonized by SR 48,968 or MEN 10,627, but not by the NK1 receptor antagonist. Our results provide evidence that, in circular muscle of rat colon, endogenous tachykinins are the main excitatory transmitters for nonadrenergic, noncholinergic (NANC) excitation and their action is mediated by both NK1 and NK2 receptors.Key words: NK1 receptor, NK2 receptor, nonadrenergic, noncholinergic (NANC) excitatory junction potential, intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.