Abstract
AbstractNanozymes are next generation of enzyme mimics. Due to the lack of activity descriptors, most nanozymes were discovered through trial‐and‐error strategies or by accident. While eg occupancy in an octahedral crystal field was proven as an effective descriptor, the t2 in a tetrahedral crystal field has rarely been explored. Here, we first identified t2 occupancy as an effective and predictive descriptor. Then, we predicted and demonstrated that spinel oxide nanozymes (AB2O4) with a t2 occupancy of around 4.4 at A site had the highest activity. Furthermore, we introduced Oβ content as a secondary descriptor. The dual descriptor strategy resulted in a three‐dimensional volcanic curve, converging at a vertex. To surpass the limitations of volcanic curves, a dual site optimizing strategy was proposed, guiding the optimization of both A and B sites as Cu and Co, respectively. The designed CuCo2O4 exhibited the highest activity, achieving around 100‐ and 2‐fold enhancement compared to initial material and the state‐of‐the‐art spinel oxide nanozyme LiCo2O4, respectively. Density functional theory calculations provided a theoretical basis for the catalytic process. This work provides a new strategy for the rational design of nanozymes, and t2 occupancy may also be applicable to the design of other catalysts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have