Abstract

Optical devices and artificial photonic materials frequently make use of periodic arrangements of identical scatterers in 3D, 2D, and 1D, e.g. photonic crystals, meta-surfaces, or particle chains. To simplify their analysis, we present here a computational framework based on the T-matrix method that explicitly exploits spherical, cylindrical, and plane waves depending on the geometry and number of dimensions of the lattice. Due to the analytic properties of the chosen basis sets in combination with the use of Ewald’s method for the lattice summation, we obtain an efficient framework to simulate such systems. The applicability will be illustrated at the conference by means of selected examples of contemporary interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.