Abstract

Semi-empirical and ab initio density-functional theory (DFT) methods were evaluated for the description of isotope exchange reactions to produce enriched 10B species. We found that DFT calculations using M06-2X/6-311+G(3d,2p) functional and basis sets in combination with the SMD implicit solvation model were able to correctly predict the performance of various anisole-derived donor molecules. We confirmed that fluorination results in greatly increased separation factors, and successfully identified the o- and 2,4-difluorinated anisole as superior donors for chemical exchange distillation. These findings provide the basis for an efficient approach to rapidly screen and design new donor species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.