Abstract
We compute the Szego kernel of the unit circle bundle of a negative line bundle dual to a regular quantum line bundle over a compact Kahler manifold. As a corollary we provide an infinite family of smoothly bounded strictly pseudoconvex domains on complex manifolds (disk bundles over homogeneous Hodge manifolds) for which the log-terms in the Fefferman expansion of the Szego kernel vanish and which are not locally CR-equivalent to the sphere. We also give a proof of the fact that, for homogeneous Hodge manifolds, the existence of a locally spherical CR-structure on the unit circle bundle alone implies that the manifold is biholomorphic to a projective space. Our results generalize those obtained by Englis (Math Z 264(4):901–912, 2010) for Hermitian symmetric spaces of compact type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.