Abstract
We develop a general structure theory for compact homogeneous Riemannian manifolds in relation to the coindex of symmetry.We will then use these results to classify irreducible, simply connected, compact homogeneous Riemannian manifolds whose coindex of symmetry is less than or equal to three. We will also construct many examples which arise from the theory of polars and centrioles in Riemannian symmetric spaces of compact type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.