Abstract
We study the system-size dependence of translational diffusion coefficients and viscosities in molecular dynamics simulations under periodic boundary conditions. Simulations of water under ambient conditions and a Lennard-Jones (LJ) fluid show that the diffusion coefficients increase strongly as the system size increases. We test a simple analytic correction for the system-size effects that is based on hydrodynamic arguments. This correction scales as N-1/3, where N is the number of particles. For a cubic simulation box of length L, the diffusion coefficient corrected for system-size effects is D0 = DPBC + 2.837297kBT/(6πηL), where DPBC is the diffusion coefficient calculated in the simulation, kB the Boltzmann constant, T the absolute temperature, and η the shear viscosity of the solvent. For water, LJ fluids, and hard-sphere fluids, this correction quantitatively accounts for the system-size dependence of the calculated self-diffusion coefficients. In contrast to diffusion coefficients, the shear viscos...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have