Abstract

Previously we showed that cardiopulmonary bypass (CPB) during cardiac surgery is associated with reduced sublingual microcirculatory perfusion and oxygenation. It has been suggested that impaired microcirculatory perfusion may be paralleled by increased heterogeneity of flow in the microvascular bed, possibly leading to arteriovenous shunting. Here we investigated our hypothesis that acute hemodynamic disturbances during extracorporeal circulation indeed lead to microcirculatory heterogeneity with hyperdynamic capillary perfusion and reduced systemic oxygen extraction. In this single-center prospective observational study, patients undergoing cardiac surgery with (n = 18) or without (n = 13) CPB were included. Perioperative microcirculatory perfusion was assessed sublingually with sidestream darkfield imaging, and recordings were quantified for microcirculatory heterogeneity and hyperdynamic capillary perfusion. The relationship with hemodynamic and oxygenation parameters was analyzed. Microcirculatory heterogeneity index increased substantially after onset of CPB [0.5 (0.0-0.9) to 1.0 (0.3-1.3); P = 0.031] but not during off-pump surgery. Median capillary red blood cell (RBC) velocity increased intraoperatively in the CPB group only [1,600 (913-2,500 μm/s) vs. 380 (190-480 μm/s); P < 0.001], with 31% of capillaries supporting high RBC velocities (>2,000 μm/s). Hyperdynamic microcirculatory perfusion was associated with reduced arteriovenous oxygen difference and systemic oxygen consumption during and after CPB. The current study provides the first direct human evidence for a microvascular shunting phenomenon through hyperdynamic capillaries following acute physiological disturbances after onset of CPB. The hypothesis of impaired systemic oxygen offloading caused by hyperdynamic capillaries was supported by reduced blood arteriovenous oxygen difference and low systemic oxygen extraction associated with CPB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.