Abstract

The onset of nonpulsatile cardiopulmonary bypass is known to deteriorate microcirculatory perfusion, but it has never been investigated whether this may be prevented by restoration of pulsatility during extracorporeal circulation. We therefore investigated the distinct effects of nonpulsatile and pulsatile flow on microcirculatory perfusion during on-pump cardiac surgery. Patients undergoing coronary artery bypass graft surgery were randomized into a nonpulsatile (n = 17) or pulsatile (n = 16) cardiopulmonary bypass group. Sublingual mucosal microvascular perfusion was measured at distinct perioperative time intervals using sidestream dark field imaging, and quantified as the level of perfused small vessel density and microvascular flow index (vessel diameter < 20 μm). Microcirculation measurements were paralleled by hemodynamic and free hemoglobin analyses. The pulse wave during pulsatile bypass estimated 58 ± 17% of the baseline blood pressure waveform. The observed reduction in perfused vessel density during aorta cross-clamping was only restored in the pulsatile flow group and increased from 15.5 ± 2.4 to 20.3 ± 3.7 mm/mm(2) upon intensive care admission (P < 0.01). The median postoperative microvascular flow index was higher in the pulsatile group [2.6 (2.5-2.9)] than in the nonpulsatile group [2.1 (1.7-2.5); P = 0.001]. Pulsatile flow was not associated with augmentation of free hemoglobin production and was paralleled by improved oxygen consumption from 70 ± 14 to 82 ± 16 ml·min(-1)·m(-2) (P = 0.01) at the end of aortic cross-clamping. In conclusion, pulsatile cardiopulmonary bypass preserves microcirculatory perfusion throughout the early postoperative period, irrespective of systemic hemodynamics. This observation is paralleled by an increase in oxygen consumption during pulsatile flow, which may hint toward decreased microcirculatory heterogeneity during extracorporeal circulation and preservation of microcirculatory perfusion throughout the perioperative period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.