Abstract

Degeneration of elastin plays a vital role in the pathology and progression of abdominal aortic aneurysm (AAA). Our previous study showed that pentagalloyl glucose (PGG), a core derivative of tannic acid, hinders the development of AAAs in a clinically relevant animal model when applied locally. In this study, we tested whether targeted nanoparticles (NPs) can deliver PGG to the site of an aneurysm and prevent aneurysmal growth by protecting elastin. PGG-loaded albumin NPs with a surface-conjugated elastin-specific antibody were prepared. Aneurysms were induced by calcium chloride-mediated injury to the abdominal aorta in rats. NPs were injected into the tail vein after 10days of CaCl2 injury. Rats were euthanized after 38days. PGG delivery led to reduction in macrophage recruitment, matrix metalloproteinase (MMP) activity, elastin degradation, calcification, and development of aortic aneurysm. Such NP delivery offers the potential for the development of effective and safe therapies for AAA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.