Abstract
Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm to solve combinatorial optimization problems in the era of noisy intermediate-scale quantum computers. Recently it has been revealed that warm-start approaches can improve the performance of QAOA, where approximate solutions are obtained by classical algorithms in advance and incorporated into the initial state and/or unitary ansatz. In this work, we study in detail how the accuracy of approximate solutions affects the performance of the warm-start QAOA (WS-QAOA). We numerically find that in typical MAX-CUT problems, WS-QAOA achieves higher fidelity (probability that exact solutions are observed) and approximation ratio than QAOA as the Hamming distance of approximate solutions to the exact ones becomes smaller. We reveal that this could be quantitatively attributed to the initial state of the ansatz. We also solve MAX-CUT problems by WS-QAOA with approximate solutions obtained via QAOA, having higher fidelity and approximation ratio than QAOA especially when the circuit is relatively shallow. We believe that our study may deepen understanding of the performance of WS-QAOA and also provide a guide as to the necessary quality of approximate solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.