Abstract

With ultracold $^{87}$Sr confined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to-date of the $^1S_0$ - $^3P_0$ optical clock transition with a detailed analysis of systematic shifts (20 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 867 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its Hz-level linewidth characterized across the optical spectrum using a femtosecond frequency comb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.