Abstract
This work represents the first systematic speciation study of selenium (Se) in plasma from subjects participating in a pilot study for a cancer prevention trial (PRECISE). This involved supplementation of elderly British and Danish individuals with selenised yeast for 6months and 5years, respectively, at 100, 200, and 300μg Se/day or placebo. Speciation data was obtained for male plasma using HPLC-ICP-MS and HPLC-ESI-MS/MS. With the proposed strategy, approximately 1.5mL of plasma was needed to determine total Se concentration and the fractionation of Se in high molecular weight (HMW) and low molecular weight (LMW) pools, and for quantification and identification of small Se species. For the first time, Se-methyl-selenocysteine (MSC) and methyl-2-acetamido-2deoxy1-seleno-β-D-galactopyranoside (Selenosugar-1) were structurally confirmed in plasma after supplementation with selenised yeast within the studied range. Determination of selenomethionine (SeMet) incorporated non-specifically into albumin (SeALB) was achieved by HPLC-ICP-MS after hydrolysis. By subtracting this SeMet concentration from the total Se in the HMW pool, the concentration of Se incorporated into selenoproteins was calculated. Results from the speciation analysis of the free Se metabolite fraction (5% of total plasma Se) suggest a significant increase in the percentage of Se (as SeMet plus Selenosugar-1) of up to 80% of the total Se in the LMW fraction after 6months of supplementation. The Se distribution in the HMW fraction reflects a significant increase in SeALB with Se depletion from selenoproteins, which occurs most significantly at doses of over 100μg Se/day after 5years. The results of this work will inform future trial design. Graphical abstract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.