Abstract

This study was conducted to determine the effects of either dietary Se source or dose on the Se status of horses. Twenty-five mature horses were blocked by BW and randomly allocated to 1 of 5 dietary treatments that comprised the same basal diet that differed only in Se source or dose. Treatments were as follows: negative control (0.085 mg of Se/kg of DM), 3 different dietary concentrations of supplemental organic Se (Se yeast; 0.2, 0.3, and 0.4 mg of total Se/kg of DM), and positive control (0.3 mg of total Se/kg of DM) supplemented with Na selenite. Horses initially received the control diet (6 kg of grass hay and 3 kg of concentrate per horse daily) for 56 d to allow diet adaptation. After the period of diet adaptation, horses were offered their respective treatments for a continuous period of 112 d. Jugular venous blood samples were collected before the morning feed on d 0, 28, 56, 84, and 112. Whole blood and plasma were analyzed for total Se, glutathione peroxidase activity in whole blood (GPX-1) and plasma, and thyroid hormones (thyroxine and triiodothyronine) in plasma. The proportion of total Se as selenomethionine (SeMet) or selenocysteine in pooled whole blood and plasma samples was determined on d 0, 56, and 112. Data were analyzed as repeated measures. Total Se in blood and plasma and GPX-1 activity were greater in all supplemented horses (P < 0.001, except P < 0.01 for GPX-1 in horses supplemented with the least dose of Se yeast) with a linear dose effect of Se yeast for whole blood and plasma Se (P < 0.001) and a quadratic dose effect (P < 0.05) for whole blood GPX-1 activity. A plateau for total Se in plasma was achieved within 75 to 90 d, although this was not observed in blood total Se or GPX-1 activity. On d 84 and 112, horses supplemented with Se yeast showed greater total Se in blood (P < 0.05) compared with horses supplemented with Na selenite, and a source effect (P < 0.05) was observed in the relationship between total blood Se and GPX-1 activity. Selenocysteine (the predominant form of Se in whole blood and plasma) increased in all horses supplemented with Se. The SeMet content of whole blood and plasma increased in horses supplemented with Se yeast, but it was not observed in those supplemented with selenite. The rate of increase in SeMet over time was greater in whole blood (P < 0.05) and plasma (P = 0.10) with the Se yeast product. In conclusion, Se yeast was more effective than Na selenite in increasing total Se in blood, mainly as consequence of a greater increase of the proportion of Se comprised as SeMet, but it did not modify GPX-1 activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call