Abstract

This study attempts to enhance the osseointegration of titanium implants by adopting a micro-arc treatment (MAT) capable of replacing calcium (Ca) with different percentages of strontium (Sr) in order to fabricate strontium-containing hydroxyapatite (Sr-HAp) coatings. Sr, regarded as a significant therapy promoting bone mass and bone strength, has a dual mechanism, enhancing osteoblast differentiation and inhibiting osteoclast differentiation. This study also investigates how Sr content affects the microstructure of and osteoblast/osteoclast growth on the coatings. Experimental results indicate that an increase in the Sr content in the electrolyte bath results in a greater degree of Sr substitution at Ca sites within the HAp phase, facilitating the formation of Sr-HAp coatings with Sr fully solid soluble in the HAp phase. Irrespective of the Sr content, most coatings are similar in porous morphology and pore size. Additionally, the Sr-HAp coating shows higher osteoblast compatibility than raw titanium metal and the HAp coating. Moreover, cell adhesion and proliferation after 48 h was greater than that after 4 h, indicating that Sr can stimulate osteoblast adhesion and proliferation. Further, Sr significantly inhibits osteoclast differentiation when the Sr-HAp coatings exceed 38.9 at.% Sr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call