Abstract
A systematic Bayesian framework is developed for physics constrained parameter inference of stochastic differential equations (SDE) from partial observations. Physical constraints are derived for stochastic climate models but are applicable for many fluid systems. A condition is derived for global stability of stochastic climate models based on energy conservation. Stochastic climate models are globally stable when a quadratic form, which is related to the cubic nonlinear operator, is negative definite. A new algorithm for the efficient sampling of such negative definite matrices is developed and also for imputing unobserved data which improve the accuracy of the parameter estimates. The performance of this framework is evaluated on two conceptual climate models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.