Abstract

Abstract This study makes use of a simple stochastic energy balance climate model that resolves the land–sea distribution and that includes a crude upwelling-diffusion deep ocean to study the natural variability of the surface temperature in different frequency bands. This is done by computing the eigenfunctions of the space-time lagged covariance function. The resulting frequency-dependent theoretical orthogonal functions (fdTOFs) are compared with the corresponding frequency-dependent empirical orthogonal functions (fdEOFs) derived from 40 years of data. The computed and modeled eigenvalues are consistent with the difference mainly explained by sampling error due to the short observational record. The magnitude of expected sampling errors is demonstrated by a series of Monte Carlo simulations with the model. The sampling error for the eigenvalues features a strong bias that appears in the simulations and apparently in the data. Component-by-component pattern correlations between the fdEOFs and the fdTOF...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.