7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1039/b507225e
Copy DOIJournal: Journal of Materials Chemistry | Publication Date: Jan 1, 2005 |
Citations: 54 |
Highly ordered periodic mesoporous organosilica (PMO) materials with various mesostructures, including lamellar, bicontinuous cubic Ia3d, 2D hexagonal (P6mm), 3D hexagonal (P63/mmc) and cubic Pm3n, have been synthesized using Gemini surfactants with general formulas of [CnH2n+1N(CH3)2(CH2)sN (CH3)2CnH2n+1]Br2 (n = 6–18 and s = 3–12, Cn-s-n). The nature of the Gemini surfactant such as alkyl chain length (n) and spacer length (s), and the synthetic conditions such as reaction temperatures and molar compositions are controlling parameters for desired mesostructures. The PMO materials, synthesized at room temperature from Cn-6-n, exhibit phase transition from lamellar to bicontinuous cubic Ia3d, 2D hexagonal, 3D hexagonal and cubic Pm3n as the chain length decreases, whereas only the lamellar and 2D hexagonal PMO materials with different lattice parameters depending on the chain length are obtained at high reaction temperature (373 K). The Cn-8-n and Cn-10-n surfactants also yield 2D hexagonal PMO material in a very wide range of synthetic condition at 373 K. The PMO materials with various mesostructures thus obtained exhibit high BET surface areas in the range of 900–1500 m2 g−1 and total pore volumes of about 0.5–1.4 cm3 g−1.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.