Abstract

Using the semiclassical WKB method and considering the WKB quantization condition, the alpha decay half-lives of 420 alpha emitters were calculated with eight forms of the proximity and Woods–Saxon type potentials. The effect of quantization condition on the nuclear potential, effective potential, assault frequency, tunneling probability, alpha decay half-life, and root mean square deviation between theory and the experiment were investigated. Significant differences between calculated half-lives with and without inclusion of the quantization condition were observed specially for proximity potentials. By including the quantization, the Woods–Saxon potential was found as the best potential for even–even, even–odd, odd–even, odd–odd, and all alpha emitters. The quantization condition normalized the nuclear potentials. Therefore, by considering this condition, the thirteen forms of the prox77 potential with different sets of the surface energy and surface asymmetry constants gave the same results. This result was justified with two sets of parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call