Abstract

We have systematically investigated the trench properties of 4H-SiC for p-type channel doping level formed by epitaxial growth, crystallographic plane, and MOS interface treatment. Our results show that the channel mobilities on the (1-100), (11-20), (-1100), and (-1-120) planes gradually decreased in the range from 1 × 1016 to 1 × 1017 cm-3 as the epitaxial channel concentration increased. An inevitable tradeoff existed between channel mobility (field-effect mobility, µFE) and threshold voltage (Vth) in trench MOSFETs. Furthermore, the maximum µFE at a channel concentration of 1 × 1017 cm-3 was 95 cm2·V-1·s-1 on the (11-20) plane with wet + hydrogen (H2) annealing, 83 cm2·V-1·s-1 on the (1-100) plane with wet + H2 annealing and 57 cm2·V-1·s-1 on the (1-100) plane with nitric oxide annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.