Abstract
The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In Eif2s3y, Uty, and Zfy2 deletants, spermatogenesis was impaired. We found that Uty regulates spermatogonial proliferation, revealed a role for Zfy2 in promoting meiotic sex chromosome pairing, and uncovered unexpected effects of Y genes on the somatic testis transcriptome. In the remaining single Y-gene deletants, spermatogenesis appeared unperturbed, but testis transcription was still altered. Multigene deletions, including a human-infertility AZFa model, exhibited phenotypes absent in single Y deletants. Thus, Y genes may regulate spermatogenesis even if they show no phenotypes when deleted individually. This study advances our knowledge of Y evolution and infertility and provides a resource to dissect Y-gene functions in other tissues.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have