Abstract

BAHD superfamily acyltransferases play an important role in catalyzing and regulating secondary metabolism in plants. Despite this, there is relatively little information regarding the BAHD superfamily in barley. In this study, we identified 116 HvBAHD acyltransferases from the barley genome. Based on phylogenetic analysis and classification in model monocotyledonous and dicotyledonous plants, we divided the genes into eight groups, I-a, I-b, II, III-a, III-b, IV, V-a and V-b. The Clade IV genes, including Agmatine Coumarol Transferase (ACT) that is associated with resistance of plants to Gibberella fungi, were absent in Arabidopsis. Cis-regulatory element analysis of the HvBAHDs showed that the genes respond positively to GA3 treatment. In-silico expression and qPCR analysis showed the HvBAHD genes are expressed in a range of tissues and developmental stages, and highly enriched in the seedling stage, consistent with diverse roles. Single nucleotide polymorphism (SNP) scanning analysis revealed that the natural variation in the coding regions of the HvBAHDs is low and the sequences have been conserved during barley domestication. Our results reveal the complexity of the HvBAHDs and will help facilitate their analysis in further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.