Abstract

The various post-translational modifications (PTMs) of plant proteins have important regulatory roles in development. We therefore examined various modified proteins from strawberry stigmata and found that succinylation of lysine residues was the most abundant type of modification. We then subjected proteins from strawberry stigmata to an efficient enrichment method for succinylated peptides and identified 200 uniquely succinylated lysines (Suks)in 116 proteins. A bioinformatics analysis revealed that these proteins are involved in important biological processes, including stress responses, vesicular transport, and energy metabolism. Proteomics, combined with immunoprecipitation and immunoblotting, revealed an obvious increase in succinylation of the assembly polypeptide 2 (AP2) and clathrin from 0.5 to 2 h after pollination, suggesting that succinylation is involved in the recognition of pollen-stigma signaling substances and vesicular transport. These results suggest that AP2/clathrin-mediated vesicular transport processes are regulated by lysine succinylation during pollen recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.