Abstract

Based on the observation that a thermochemical cycle is tantamount to a reaction route (RR) we employ the well-developed concepts of response reactions (RERs) and direct reaction routes (RRs) to develop an algorithm for a systematic enumeration of thermodynamically feasible thermochemical cycles for water splitting. The input is a set of chemical species along with their thermodynamic characteristics. A unique set of reactions is next generated from a list of species using the formalism of RERs. These are further screened and reduced to a subset of thermodynamically favorable RERs. Alternatively, the reactions may be selected from a separately build database of chemical reactions. The reactions are next assembled into direct RRs (thermochemical cycles), i.e., linear combinations of reactions that produce the desired overall reaction (OR), i.e., 2H 2O = 2H 2 + O 2. Only the direct RRs that satisfy the thermodynamic feasibility condition are further retained. The proposed algorithm is a new powerful tool for automatic generation and screening of thermodynamically feasible thermochemical cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.