Abstract
Business process re-engineering (or optimization) has been attracting a lot of interest, and it is considered as a core element of business process management (BPM). One of its most effective mechanisms is task re-sequencing with a view to decreasing process duration and costs, whereas duration (aka cycle time) can be reduced using task parallelism as well. In this work, we propose a novel combination of these two mechanisms, which is resource allocation-aware. Starting from a solution where a given resource allocation in business processes can drive optimizations in an underlying BPMN diagram, our proposal considers resource allocation and model modifications in a combined manner, where an initially suboptimal resource allocation can lead to better overall process executions. More specifically, the main contribution is twofold: (i) to present a proposal that leverages a variant of representation of processes as Refined Process Structure Trees (RPSTs) with a view to enabling novel resource allocation-driven task re-ordering and parallelisation in a principled manner, and (ii) to introduce a resource allocation paradigm that assigns tasks to resources taking into account the re-sequencing opportunities that can arise. The results show that we can yield improvements in a very high proportion of our experimental cases, while these improvements can reach a 45% decrease in cycle time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.