Abstract

The recent development of hydrophobic deep eutectic solvents (HDESs) has led to growing interest in these reagents as possible environmentally benign replacements for conventional organic media in a host of applications, among them metal ion separations by liquid-liquid extraction. To evaluate the potential utility of these novel solvents in this application, a systematic examination of the facilitated transfer of selected alkali and alkaline earth cations into representative HDESs from aqueous solution in the presence of a macrocyclic polyether (i.e., a crown ether) has been undertaken. Comparison of the results to those obtained for a series of oxygenated, aliphatic solvents (n-alcohols) and for several 1-alkyl-3-methylimidazolium-based ionic liquids (ILs) under the same conditions indicate that despite frequent suggestions that some HDESs resemble ILs, metal ion distribution in HDES-aqueous systems more closely mimics that seen for the alcohols. Metal ion partitioning in these systems appears less dependent on the water content of the organic phase and on structural variations in the solvent than is the case for either alcohols or ionic liquids, however. The implications of these results for the design and application of HDES-based extraction systems for metal ions are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call