Abstract

The integration of decentralized energy resources is changing the ways distribution grids are being operated. Moreover, a major change is the implementation of active control strategies to adapt to the energy transition, such as voltage and reactive power in-feed control. Correspondingly, the dynamic nature of these controllers, the potential conflict of control objectives and uncertainty of these sources require frequent assessment of the system’s dynamic behaviour. For this reason, this paper defines high level guidelines that allow simplifying Dynamic Security Assessment (DSA) in distribution networks, through the implementation of a methodology to determine the interactions of the network with its controllers. With this in mind, the focus of these guidelines is kept in reducing the computational effort, by reducing the number of dynamic simulations, as well as the amount of active controllers necessary for DSA. These guidelines are verified in an artificial 242-busbar distribution network, resulting in a reduction of 21,4% in number of dynamic simulations required for DSA.

Highlights

  • The current evolution of power systems from an unidirectional to a multi-directional power flow system, in which decentralized generation sources are increasing, impacts directly the way they are being operated to ensure the security and quality of electrical supply (Jakus et al 2015; Velasquez et al 2018)

  • This paper defines high level guidelines that allow simplifying Dynamic Security Assessment (DSA) in distribution networks, through the implementation of a methodology to determine the interactions of the network with its controllers

  • This management is accompanied by the introduction of a more complex information and communication technologies (ICT), as decentralized controllers act together based on the information exchange between them and remote substations in the power grid, turning the conventional power system into a digitalized one (Mayer et al 2018)

Read more

Summary

Introduction

The current evolution of power systems from an unidirectional to a multi-directional power flow system, in which decentralized generation sources are increasing, impacts directly the way they are being operated to ensure the security and quality of electrical supply (Jakus et al 2015; Velasquez et al 2018). The intermittent nature of the renewable energy sources, in addition to their massive decentralized installation in distribution networks, pushes the implementation of different controller strategies to optimally manage the network, which require the joint participation of a large set of controllable elements (VDE (FNN) 2016) This management is accompanied by the introduction of a more complex information and communication technologies (ICT), as decentralized controllers act together based on the information exchange between them and remote substations in the power grid, turning the conventional power system into a digitalized one (Mayer et al 2018). Continuous and reliable information flow becomes critical in foreseeing the operation state of the power system and its degree of security In this sense, the development of the innovation in ICT (e.g. artificial intelligence, the Internet of things, cloud technologies) brings a further digitalization of the distribution networks, where small producers connected in the low voltage levels gain prominence in the energy system (Mayer et al 2018). The power system is evolving towards a digitalized system in which ICT is one more of its components, instead of a separate layer (Babazadeh and Nordström 2014)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call