Abstract
The modification patterns of N6-methyladenosine (m6A) regulators and interacting genes are deeply involved in tumors. However, the effect of m6A modification patterns on human proteomics remains largely unknown. We evaluated the molecular characteristics and clinical relevance of m6A modification proteomics patterns among 1013 pan-cancer samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). More than half of the m6A proteins were expressed at higher levels in tumor tissues and presented oncogenic characteristics. Furthermore, we performed multi-omics analyses integrating with transcriptomics data of m6A regulators and interactive coding and non-coding RNAs and developed a m6A multi-omics signature to identify potential m6A modification target proteins across global proteomics. It was significantly associated with overall survival in nine cancer types, tumor mutation burden (P = 0.01), and immune checkpoints including PD-L1 (P = 4.9 × 10-8) and PD-1 (P < 0.01). We identified 51 novel proteins associated with the multi-omics signature (PFDR < 0.05). These proteins were functional through pathway enrichment analyses. The protein with the highest hit frequency was CHORDC1, which was significantly up-regulated in tumor tissues in nine cancer types. Its higher abundance was significantly associated with a poorer prognosis in seven cancer types. The identified m6A target proteins might provide infomation for the study of molecular mechanism of cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.