Abstract
The fragment molecular orbital (FMO) method is a fast quantum-mechanical method that divides systems into pieces of fragments and performs ab initio calculations. The system truncation enables further speed improvement. In this article, we systematically study the effects of system truncations on binding affinity calculations obtained with FMO in combination with either the polarizable continuum model (FMO/PCM) or in combination with the Møller-Plesset method (FMO-MP2). We have used five protein complexes with ligands of several charged states. The calculated binding energies of the size variants of the truncated system, including only a restricted number of atoms around the ligand, are compared to the energy obtained from a full system. The result shows that the systems could be truncated to a radius of 8Å from neutral ligands within an error of 0.7kcal/mol, and 12 Å from charged ligands within an error of 1.1kcal/mol for calculating the binding energy in solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.