Abstract
A systematic study on forward–backward (FB) multiplicity correlations from large systems to small ones through a multi-phase transport model (AMPT) has been performed and the phenomenon that correlation strength increases with centrality can be explained by taking the distribution of events as the superposition of a series of Gaussian distributions. It is also found that correlations in the plane can imply the shape of the event. Furthermore, long-range correlations originate from the fluctuations associated with the source information. FB correlations allow us to decouple long-range correlations from short-range correlations, and may provide a chance to investigate the α-clustering structure in initial colliding light nuclei as well. It seems the tetrahedron 16O + 16O collision gives a more uniform and symmetrical fireball, that emits the final particles more isotropically or independently in the longitudinal direction, indicating that the forward–backward multiplicity correlation could be used to identify the pattern of α-clustered 16O in future experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have