Abstract

One or several component failures may lead to more related component malfunction and ultimately cause system reliability reduction. Based on this, we focus on the assessment system reliability of complex electromechanical systems (CEMSs) in a fault-propagation view. First, failure propagation model taking into consideration failure data based on network theory and improved polychromatic sets is proposed for system reliability evaluation. From the node point of view, system effectiveness index is constructed to investigate the variation of efficiency of the holistic network. Subsequently, from the system’s perspective, system reliability measurement is provided and estimated in combination with system effectiveness index and failure propagation models. Finally, the application of proposed method to a bogie system of high-speed train assesses system reliability, and meanwhile, the effectiveness of the proposed method is able to be illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.