Abstract

Deep borehole heat exchanger (BHE) systems, installed in abandoned boreholes, have been operative in Switzerland for several years now. The operational conditions of the 2302 m deep BHE plant at Weggis have been monitored continuously since 1994. In the first operational phase, lasting from October 1994 to May 1996, the plant was severely underused, as shown by the high production temperatures (∼40 °C). This behaviour was investigated by a numerical model accounting for the heat transport in the rock matrix and along the different tubing systems, with special emphasis on the heat transfer in a multi-layer insulated central pipe. Lacking detailed logging data or undisturbed temperature profiles, an axis-symmetrical model had to be used, assuming uniform rock parameters. Sensitivity studies highlighted the effect of varying flow rate or operation/recovery cycle lengths and helped to develop a strategy that allowed us to make an accurate calculation of the long-term Weggis production history. The initial model assumptions, based on this detailed treatment of the tubing system, could explain the operational data. By means of slight model variations that account only for the minor effects of metallic sleeves, the long-term production temperature history of the Weggis plant could be accurately fitted. These findings were confirmed by a detailed analysis of the May 1996 data. Due to the low degree of utilization, only numerical sensitivity analyses were able to highlight the potential of the deep BHE plant at Weggis. The results indicate that the low utilisation of ∼40 kW during the first operational phase could be increased to over 200 kW. The specific yield of deep systems is much higher than in conventional shallow BHE systems. Our simulation procedure proves that the heat transfer in a deep BHE system is well understood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call