Abstract
Ultrasonic detection and characterization of targets concealed by scattering noise is remarkably challenging. In this study, a neural network (NN) coupled to split-spectrum processing (SSP) is examined for target echo visibility enhancement using experimental measurements with input signal-to-noise ratio around 0 dB. The SSP-NN target detection system is trainable and consequently is capable of improving the target-to-clutter ratio by an average of 40 dB. The proposed system is exceptionally robust and outperforms the conventional techniques such as minimum, median, average, geometric mean, and polarity threshold detectors. For realtime imaging applications, a field-programmable gate array (FPGA)-based hardware platform is designed for system-onchip (SoC) realization of the SSP-NN target detection system. This platform is a hardware/software co-design system using parallel and pipelined multiplications and additions for highspeed operation and high computational throughput.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.